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Abstract: This paper mainly discusses the demand bidding and risk management of user aggregators
by considering profit and risk. The covariance matrix of demand price was used to analyze the risk
model under an uncertain demand price. By considering revenue and cost, the demand bidding
strategy of user aggregators was derived to obtain the maximum profit. By using a risk-tolerance
parameter β, a new demand bidding model for the user aggregators that takes both risk and profit
into consideration was formulated. We simulated the risk posed by fluctuating demand prices for
user aggregators using this model. Finally, this paper proposes Feasible Particle Swarm Optimization
(FPSO) to solve the demand bidding model of user aggregators. Through the dynamic adjustment of
control factor parameters in the FPSO, we changed the behavioral characteristics of various types
of particles, improved the search efficiency and stability of particles in high-dimensional space, and
sought the optimal solution for the system as a whole. This paper provides a parameter adjustment
mechanism, improves the capability of algorithm implementation, and increases the probability of
finding the optimal solution. The simulation results suggest that a tradeoff between profit and risk
needs to be considered in the search process. By doing so, enterprises’ abilities in terms of operation
and management control can be enhanced, and effective demand management can be achieved.

Keywords: demand bidding; risk management; covariance matrix; particle swarm optimization

1. Introduction

In recent years, the overall investment environment in Taiwan has been booming,
and electricity consumption has reached a record high every year. The gap between peak
load and off-peak load continues to increase every year. The ratio between the summer
peak load during the day and the off-peak load at night is about 1:0.61, and the maximum
summer load is about 1.4 times that of the maximum non-summer load [1]. This shows
that there is still a great difference in load between different seasons and between the peak
load and off-peak load of the power system. In order to reflect the power supply cost
difference between the peak and off-peak power consumption in summer and non-summer
months, the Taiwan Power Company (TPC) implements an electricity price system based
on seasons and time to control the peak load and improve the power supply [2]. Electricity
users can cooperate with the power company to implement load management and reduce
power consumption in peak periods without affecting their electricity demand or normal
operation. Therefore, it could improve their willingness to participate the implementation
performance of this system. In addition, electricity users could also obtain some revenue
due to favorable feedback and compensation from the power company. All of these could
be more beneficial through the utilization rate of power equipment and enhancing the
quality of electricity utilization. If operators could effectively implement these to reduce the
problem of excessive peak load through shifting the electricity consumption during peak
periods to off-peak periods, achieve power balance, and reduce the construction demand
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of new power plants, it would effectively improve the electricity supply and ensure that
power companies and enterprise users achieve a mutually beneficial situation. Therefore,
for load management, the research and development of a demand management strategy is
one of the most important policy directions [3].

The demand response (DR) strategy is one of the measures taken by power companies
to reduce electricity consumption, and this strategy could provide incentives to reduce
electric charges. During periods when the power supply is low or the cost is high, electricity
users could cooperate to reduce the agreed electricity load and consumption, which could
have a very significant effect on system load reduction in peak periods. This strategy could
reduce the burden of electricity charges on users for electricity consumption, and it has
gradually started to attract the attention of enterprise users. In the demand response mech-
anism, such as the planned electricity reduction measures or demand bidding strategy [4],
the electricity load and consumption reduced by electricity users could obtain high benefits
through participating in the demand bidding strategy. Under the framework of a demand
bidding strategy, power companies could provide electricity price discounts or other mar-
ket incentive mechanisms, and the aggregator representative of electricity users could
reduce the electricity load and consumption during periods of low peak electricity supply
for many users according to the needs of the power company by means of demand bidding.
The concept of Virtual Peaking Capacity (VPC) [5] could generate electric resources not
only from the central power system but also from the distributed power generation system
at the power load end under the “real-time” and “two-way” approaches. Therefore, in
comparison with traditional systems, the electricity supply and demand are multi-variant
and more flexible. In addition, through the implementation of energy saving plans, it could
reduce the electricity consumption demand of power users.

In recent years, demand management strategies for the electricity market have mainly
focused on the effects of various operation strategies on profit. Some studies have effec-
tively demonstrated how to solve these problems in the electricity market. Reference [6]
incorporated price-based demand response to perform the optimal dispatch schedule in
the day-ahead electricity market. A new demand bidding strategy for the smart building
aggregator was proposed to perform demand response in the electricity market [7]. Ref-
erences [8,9] proposed a bi-level model for the demand bidding strategy of load agents
with incentive-based demand response in day-ahead electricity markets. Based on game
theory, [10] proposed an optimal bidding strategy for demand response in the electricity
market. A dynamic demand bidding strategy for an aggregator was proposed to par-
ticipate in the frequency regulation market [11]. A demand response model between
the integrated energy production base, load aggregator, and user is established, which
is solved by a mixed-integer quadratic programming–multi-verse optimizer distributed
algorithm [12]. Reference [13] proposed a novel approach for incorporating incentive-based
and price-based demand response programs in long-term generational investment plan-
ning. Reference [14] established an energy management platform by integrating distributed
power and energy storage to perform the demand bidding strategy. The common disadvan-
tage of the methods described is the lack of guarantee that the profit may be at risk due to
the uncertainties of the electricity price. While some risk was expected in the formation and
operation of demand response, addressing uncertainties would be a key issue in studying
this topic.

Risk management has become an essential condition for the sustainable operation of
the power generation industry [15,16]. The demand bidding strategy of user aggregators
is particularly important for the degree of risk of profit [17]. The risk assessment would
analyze the possible risks faced by each system during power dispatching and pricing
and discuss the maximum profit of demand bidding for user aggregators and the corre-
sponding risk after considering the risk limit. However, in the demand bidding strategy,
representatives of users could integrate many different electricity users and sign contracts
with them under the participation conditions of demand response [18–20]. This study
analyzed the demand bidding of user aggregators and considered the maximum profit
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after taking profit and risk into consideration. The demand price variability is used to
generate demand price variation to establish a covariance matrix of demand price [21],
which is used to analyze the risk level of demand bidding for user aggregators. The effect
of risk is explicitly introduced in the bidding strategy problem, considering the variance in
demand prices. The tradeoff model between profit and risk is properly addressed within a
given risk tolerance. Finally, this paper proposed a Feasible Particle Swarm Optimization
(FPSO) to solve the demand bidding model of user aggregators. In the FPSO procedure,
the dynamic control parameters are embedded in the particle swarm of the FPSO to im-
prove the behavior patterns of each particle swarm and increase its search efficiency and
accuracy in high dimensions. Different modifications in the moving patterns of FPSO are
proposed to search the feasible space more effectively. The results can help decision-makers
optimize the tradeoffs between maximum profit and minimum risk. In addition to helping
decision-makers improve system operation safety, energy efficiency, and risk management,
this study can also explore the economic benefits of different decisions in the architecture
and planning of energy management systems.

2. Risk Model for Demand Bidding

In Taiwan, the model of planning electricity consumption reduction allows users to
evaluate their characteristics for obtaining their maximum profit. Three models were devel-
oped by the Taiwan Power Company, which included an 8 day monthly reduction model,
a 6 h daily reduction model, and a 2 h daily reduction model [22]. The implementation
period was from June 1 to September 30 each year [22]. In the 8 day monthly reduction
model, the suppression of electricity consumption occurs from Monday to Friday every
month, and the suppression of electricity consumption time is 10 a.m. to 5 p.m. In the 6 h
daily reduction model, the suppression of electricity consumption occurs from Monday to
Friday every month, and the suppression of electricity consumption times are 10–12 a.m.
and 1–5 p.m. In the 2 h daily reduction model, the suppression of electricity consumption
occurs from Monday to Friday every month, and the suppression of electricity consumption
time is 1–3 p.m. This paper adopted the 6 h daily reduction model to analyze the risk of
demand bidding by user aggregators. The suppression of electricity consumption occurs
from 10 a.m. to 12 p.m. and from 1 p.m. to 5 p.m. daily during non-holidays. This study
utilized the uncertain demand price in the electricity market to generate the demand price
variation and establish the covariance matrix of the demand price to analyze the risk of
demand bidding by user aggregators. The procedure is described as follows:

1. In the day-ahead demand-bidding market, the revenue of the user aggregators is
defined as follows:

Revnue =
T

∑
t=1

λt pt (1)

in the day-ahead demand bidding market, the average revenue of the user aggregator
can be obtained by adding the power demand that can be sold at the estimated power
expectation for each period (the total demand amount of user aggregators). The
expected revenue operator in total periods can be changed as follows:

Rexp =
T

∑
t=1

Eλt{λt}pt (2)

where pt is the power demand (MW) bid by the user aggregator during the period t,
and Rest is the expected total revenue of the user aggregator. λt is the demand price
of the user aggregator during the period t. T is the total period of demand bidding
(the total peak period was 6 h which included from 10 a.m. to 12 p.m. and from 1 p.m.
to 5 p.m. EλT is the expected value operator of the random variable λT ;
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2. During the 6 h of the peak period, the profits of each period affect each other. The
total variation value of revenue during the peak period of 6 h is calculated as follows:

Varλ1,··· ,λT

{
T

∑
t=1

λt pt

}
=

T

∑
t=1

T

∑
j=1

piVij pj (3)

Varλ1 , · · · , VarλT is the variance operator of the random variable. V = (Vij) is the
T × T covariance matrix of the demand price λ1, · · · , λT . pi and pj are the power
demand (MW) bid by the user aggregators, and they are converted into rows and
columns. Because the demand price is the only random variable, the variation of total
profit can be expressed by taking the demand price as the covariance matrix. The
covariance matrix of the d day is:

V = Eλ1,··· ,λT

{ (
∧true

d −∧est
d
) (
∧true

d −∧est
d
)T
}

(4)

Λd = [λ1, · · · , λT ]
T;

3. If the bidding history data of the demand trading market are collected up to d− 1 day,
the covariance matrix formula of d day can be expressed by the actual and predicted
values as follows:

Vest =
1
D

D

∑
i=1

(Λtrue
i −Λest

i ) (Λtrue
i −Λest

i )
T (5)

where ture represents the superscript of the actual value, and D is the total number
of days that is the greatest and contains d − 1 day. When Equation (5) is directly
used, due to the nature of the price characteristics of the demand trading market, they
may have multiple seasonal characteristics and high variability, as well as unusual
purchase prices affected by high load;

4. In order to obtain an accurate prediction, it could be modified with the exponentially
weighted moving average equation [23]:

Vest = (1− α)
D

∑
i=1

αi−1(Λtrue
D−i+1 −Λest

D−i+1) (Λ
true
D−i+1 −Λest

D−i+1)
T (6)

where Λ is the data on the demand price of past user aggregators, which is multiplied
by the weight value α(0 < α < 1). The closer to the estimated d day, the greater the
weight value; the further from the estimated d day, the more exponentially the weight
value decays. Therefore, old data have less influence on the variance and covariance
because they generate outliers due to excessive load. Equations (5) and (6) are both
modified formulas representing the covariance matrix V. However, the larger the
D value, the smaller the unreasonable estimation offset. In addition, the smaller the
estimation offset, the more accurate the estimation result;

5. Regarding the demand bidding planning of the user aggregators, the demand plan-
ning strategy for maximum profit can be formulated as follows:

maximize
p1,···pT

T

∑
t=1

(λest
t pt −

N

∑
n=1

Ut,nFctt,n) , p1, · · · , pT ∈ Π (7)

Fctn = anPct2
n + bnPctn + cn (8)

where Ut,n is the purchase status of the user aggregators for downstream users during
the period t. Fctt,n and Pctn are the cost function and electricity amount of the
user aggregators in the demand bidding, respectively. a, b, and c are the demand
bidding curves of user aggregators. Π is a feasible solution. N is the number of
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user aggregators who took part in the demand bidding during the time period t.
The demand bidding must face the tradeoff between the maximum profit and the
minimum risk. If the user aggregators seek to minimize risk regardless of profit, the
risk minimization procedure can be formulated as follows:

minimize
p1,···pT

T

∑
i=1

T

∑
j=1

piVest
ij pj , p1, · · · , pT ∈ Π; (9)

6. Vest is the risk variation of the demand price of the utility during the peak hours,
while pi and pj are the demand bids by the user aggregators. The user aggregators are
most interested in the best demand bidding to make profits, and the demand bidding
of these user aggregators have the maximum profit with the minimum risk. In order
to compromise these two conflicting goals, the best choice is complemented by a risk-
tolerance parameter β. Therefore, the demand bidding for the user aggregators, taking
both risk and maximum profit into consideration, can be formulated as Equation (10):

maximize
p1,···pT

T

∑
t=1

(λest
t pt −

N

∑
i=1

Ut,iFctt,i)− β
T

∑
i=1

T

∑
j=1

piVest
ij pj, p1, · · · , pT ∈ Π (10)

in addition, it should meet the restriction conditions of period t as in Equation (11):

N

∑
n=1

Ut,nFctt,n = Pt,i t = 1, 2, . . . , T (11)

profit and risk are two different objectives. Hence, a compromise solution is required
to solve the demand bidding problem. Equation (10) is an objective function in this
paper. The objective function adopted the concepts of “profit” and “risk” to obtain
the maximum profit by controlling the “risk”. When the risk-tolerance parameter β is
higher, the profit is lower.

3. Feasible Particle Swarm Optimization

In 1995, PSO was developed by [24] to simulate numerical analysis. The PSO algorithm
is based on the mechanism of birds’ swarming behavior. When birds forage, each bird
is like a particle. Each particle keeps in mind its current best position (pbest), and the
best position of the group (gbst) in the population. The disadvantage of PSO is that the
convergence speed is higher in the initial search for solving the optimization problem. In
the later stage, the particle swarm gradually moves toward the optimal solution of the
swarm. Thus, the diversity of the whole swarm is lost, and the particle can easily fall into
the local optimal solution.

In PSO, the position and velocity of particles are defined in Equations (12) and (13):

vt+1
i = w× vt

i + c1 × rand× (pbestt
i − xt

i ) + c2 × rand× (gbestt − xt
i ) (12)

xt+1
i = xt

i + vt+1
i (13)

where xt
i is the position of particle i at iteration t, and vt

i is the velocity of particle i during
iteration t. pbestt

i is the best position of a particle i at iteration t, and gbestt is the best
position of all particles at iteration t. c1 and c2 are learning constants that influence the
forward speed of the particle. In this paper, c1 and c2 are 2.05. w is the speed weight of the
current generation, and w means a small variance when the particle changes its position;
otherwise, the variance is large.

PSO has the characteristics of movement, evolution, elimination, and multiple vari-
ability. The movement in the PSO process is only dependent on the movement distance
generated, and the movement information is transmitted between the particles. It is easy
to converge on the local optimum. FPSO introduces an auto-tuning scheme that allocates
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“infeasible solution (gbestinf)” and “feasible solution (gbestf)” to the solution space by using
random parameters to make the PSO search for the global optimum more efficient, as
shown in Figure 1. In Figure 1, the “infeasible solution (gbestinf)” space may be an attrac-
tive solution in the next generation, and improvement of the auto-tuning solution starts
with finding the best direction to take advantage of more opportunity to obtain the global
optimum. The velocity of particles in the FPSO system is defined in Equation (14):

i f r < 0.3

then
vt+1

i,j = w× vt
i,j + c1 × rand× (pbesti,j − xt

i,j)

+c2 × rand× (gbestinf,j − xt
i,j)

elsei f 0.3 ≤ r ≤ 0.7

then
vt+1

i,j = w× vt
i,j + c1 × rand× (pbesti,j − xt

i,j)

+c2 × rand× (gbestj − xt
i,j)

else r > 0.7

then
vt+1

i,j = w× vt
i,j + c1 × rand× (pbesti,j − xt

i,j)

+c2 × rand× (gbest f ,j − xt
i,j)

(14)
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Figure 2 presents a flowchart of the solution algorithm.
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4. Case Study and Analysis

In this paper, the utility firm purchased demand from user aggregators for a total of
6 h. The demand price announced by the utility firm is shown in Table 1, and the demand
to be provided after the bidding is shown in Table 2. The model of the covariance matrix
constructed by the user aggregators with the use of the bidding history data of the demand
trading market is shown in Table 3 [25]. In addition, the risk-tolerance parameter was set as
β = 0.05; the higher β has the lower the revenue of the user aggregators. After predicting the
demand price of the utility firm, the covariance matrix is constructed, and the risk-tolerance
parameter is set so that the profit maximization of the user aggregators with risk assessment
can be calculated.

Table 1. Demand price (USD/MW).

Hour 10 11 13 14 15 16

Price 66.609 78.372 85.698 78.273 72.072 63.342

Table 2. Demand provided of user aggregators.

Hour 10 11 13 14 15 16

DR(MW) 352.81 364.18 417.69 396.41 387.3795 370.56

Table 3. Covariance matrix of electricity prices.

Hour 10 11 13 14 15 16

10 0.0036 −0.0018 0.0054 −0.0036 −0.0018 0.0018

11 −0.0018 0.0009 −0.0027 0.0018 0.0009 −0.0009

13 0.0054 −0.0027 0.0081 −0.0054 −0.0027 0.0027

14 −0.0036 0.0018 −0.0054 0.0036 0.0018 −0.0018

15 −0.0018 0.0009 −0.0027 0.0018 0.0009 −0.0009

16 0.0018 −0.0009 0.0027 −0.0018 −0.0009 0.0009

Two cases with a demand bidding curve for user aggregators are analyzed to assess
the feasibility of the proposed algorithm. The two cases are expressed as:

Case 1. Profit maximization of the user aggregators with the quadratic bidding curve;

Case 2. Profit maximization of the user aggregators with different bidding curves.

All data were obtained from TPC Power Development Planning [26].

Case 1. Profit maximization of the user aggregators with the quadratic bidding curve.

In this case, 13 user aggregators were taken as samples using the quadratic bidding
curve. Table 4 shows the parameter coefficients of the bidding curve for the user aggrega-
tors.
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Table 4. Bidding curve of user aggregators.

Aggregator Max. (MW) Min. (MW) a b C

1 17.1 3 0.69 33.65 9.4705

2 28.5 5 0.942 40.9 36.903

3 45 5 0.357 40.15 28.771

4 45 5 0.605 64.5 0

5 75 10 0.421 62.5 91.34

6 75 10 0.708 45.75 172.83

7 82.5 15 0.313 39.85 64.783

8 82.5 30 0.298 33.15 78.596

9 82.5 30 0.277 35.5 80.132

10 22.5 4 0.52124 16.65 105.51

11 28.5 5 0.16 32.15 22.292

12 30 5 0.01 44.75 10.787

13 16.5 3 1.61 29.4 30.745

FPSO is used to optimize the amount and price of bidding demand as shown in Table 5.
Because the demand prices for users 4 and 5 are relatively high, they have no winning
bids. In these 6 h, the demand price provided by the utility firm to the user aggregators
is USD 170,192.1, and the risk cost calculated by the Vest covariance matrix and the risk
tolerance parameter β = 0.05 is USD 13,078.08. The demand purchase cost paid by the user
aggregators to the downstream users is USD 120,741, and the average purchase price per
unit is USD 52.78 MW. Therefore, the maximum profit of the user aggregators with risk
assessment is USD 34,793.28.

Table 5. Bidding demand amount and price in Case 1.

Unit
Demand Amount (MW/hour) Total

(MW)
Total Purchase

Price (USD)
Purchase Price Per
Unit (USD/MW)10 11 13 14 15 16

1 17.09 17.10 17.10 17.05 17.10 17.07 102.52 4715.04 45.99

2 16.34 15.63 18.04 17.11 18.22 14.83 100.17 5902.04 58.92

3 42.37 45.00 45.00 44.90 45.00 45.00 267.27 15,155.67 56.71

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 13.65 19.80 23.19 21.32 22.71 16.94 117.61 8097.63 68.85

7 42.57 42.97 59.50 54.15 46.93 47.21 293.33 16,635.63 56.71

8 63.96 71.16 82.50 68.97 72.71 65.05 424.35 23,549.40 55.49

9 62.92 59.43 75.17 76.31 69.79 69.21 412.82 23,064.65 55.87

10 22.50 22.50 22.50 22.50 22.39 22.50 134.89 4459.83 33.06

11 28.50 28.50 28.50 28.50 28.50 28.34 170.84 6404.57 37.49

12 30.00 29.94 30.00 29.92 30.00 30.00 179.86 8167.34 45.41

13 12.10 11.97 16.50 15.28 14.65 13.87 84.35 4599.60 54.53

When the demand purchase is a quadratic curve, the demand purchase amount of the
user aggregators also affects the profit directly. When the sum of demands in Table 5 is
100%, the cases of 50% and 150% demand are calculated. The profit of the user aggregators
is shown in Figure 3. When the risk tolerance parameter β = 0.05, the profit at 50% demand
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is USD 20,314.10, and the profit at 150% demand is USD 18,363.59. Both of them are less
than the profit of 100% demand, which is USD 34,793.28. Therefore, it could be found that
the user aggregators must effectively evaluate the purchase cost of downstream users and
select the appropriate demand to provide while participating in the purchase from the
utility firm.
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Case 2. Profit maximization of the user aggregators with different bidding curves.

The user aggregators consisted of 13 users. The bidding curves are linear, quadratic,
and segment linear, as shown in Figure 4, and their detailed data parameters are shown in
Table 6. Users 3, 6, 9, and 12 are segmented linearly with forbidden zones, and purchase
demand could not be purchased from them between the minimum and maximum non-
operational zones.
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Table 6. Bidding curves of the different user aggregators.

Aggregator 1 2 3 4 5 6 7

Max. 17.1 28.5 45 45 75 75 82.5

Min. 3 5 5 5 10 10 15

A 0 0.942 0 0 0.421 0 0

b1 33.65 40.9 40.15 64.5 62.5 45.75 39.85

C 9.4705 36.903 28.771 72.282 91.34 172.83 64.783

b2 0 0 48.18 0 0 54.9 0

Not Operate Min. 23 40

Not Operate Max. 27 45

Aggregator 8 9 10 11 12 13

Max. 82.5 82.5 22.5 28.5 30 16.5

Min. 30 30 4 5 5 3

A 0.298 0 0 0.16 0 0

b1 33.15 35.5 16.65 32.15 44.75 29.4

C 78.596 80.132 105.51 22.292 10.787 30.745

b2 0 42.6 0 0 53.7 0

Not Operate Min. 54 16

Not Operate Max. 59 19

The operating curve of aggregators 1, 4, 7, 10, and 13 is a linear function. The operating curve of aggregators 2, 5,
8, and 11 is a quadratic function. The operating curve of aggregators 3, 6, 9, and 12 is a segment linear function.

Table 7 shows the amount and price of bidding demand. In Table 7, the bidding curves
of users 4 and 5 were relatively high, while the cost of user 12 became expensive in the later
period. In these 6 h, the demand purchase price provided by the utility firm to the user
aggregators is USD 170,192.1, and the risk cost calculated by the Vest covariance matrix and
the risk tolerance parameter β = 0.05 is USD 13,078.07. The demand purchase cost paid by
the user aggregators to the downstream users is USD 93,795.15. Therefore, the maximum
profit of the user aggregators with risk assessment is USD 74,673.67. Because Case 1 has a
quadratic purchase curve, the profit of Case 2 is higher than that of Case 1.

Table 7. Bidding demand amount and price in Case 2.

Unit
The Demand Amount (MW/Hour) Total

(MW)
Total Purchase

Price (USD)
Purchase Price

Per Unit (USD/MW)10 11 13 14 15 16

1 17.10 15.65 17.10 17.08 17.09 17.10 101.12 3459.43 34.21

2 0.00 0.00 14.77 0.00 0.00 0.00 14.77 846.80 57.32

3 45.00 44.40 45.00 45.00 45.00 44.97 269.37 10,934.02 40.59

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 38.83 75.00 75.00 75.00 75.00 64.84 403.67 18,090.70 44.82

7 81.13 82.50 82.50 82.50 82.50 82.50 493.63 20,059.66 40.64

8 54.73 43.36 52.08 46.85 40.86 34.65 272.52 13,276.11 48.72
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Table 7. Cont.

Unit
The Demand Amount (MW/Hour) Total

(MW)
Total Purchase

Price (USD)
Purchase Price

Per Unit (USD/MW)10 11 13 14 15 16

9 47.72 35.79 53.87 53.92 53.35 52.94 297.59 12,120.89 40.73

10 22.50 22.50 22.50 22.50 22.50 22.50 135.00 2880.81 21.34

11 28.50 28.29 28.50 28.50 28.50 28.50 170.79 6402.65 37.49

12 0 0 10.18 8.15 6.69 5.54 30.57 2260.65 73.96

13 16.50 16.50 16.50 16.50 16.50 16.47 98.97 3094.24 31.26

When the demand purchase curve is different, the demand purchase amount of the
user aggregators will also affect the profit directly. When the sum of demand shown in
Table 7 was 100%, the cases of 50% and 150% demand were calculated. The profit of the
user aggregators is shown in Figure 5. The profit of 50% demand is USD 45,700.71, the
profit of 100% demand is USD 74,673.67, and the profit of 150% demand is USD 77,030.91.
It was found that the profit of the DR user aggregators at 100% and 150% became gradually
flat and could not generate more profit.
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Based on the measurement formulas of Case 1 and Case 2, it can be seen that different
user demand purchase curves had a great influence on the profit of the user aggregators.
Therefore, the proportion of the user aggregators that participate in the demand purchase
by the utility firm also needs to be effectively evaluated to calculate the maximum profit
value for the user aggregators.

5. Conclusions

This study mainly discussed the demand bidding model of user aggregators and con-
sidered the maximum profit after taking profit and risk into consideration. The covariance
matrix of demand prices was used to establish the demand price variability and derive the
risk model of demand bidding. By using a risk-tolerance parameter β, a new demand bid-
ding model for the user aggregators that takes both risk and profit into consideration was
formulated. All constraints, including the load balance and bidding capacity constraints,
were considered in this paper. This paper used Feasible Particle Swarm Optimization
(FPSO) to perform simulations and analyses. Two cases with different bidding curves of
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user aggregators were used to simulate the efficiency of the proposed algorithm. We found
that the user aggregators can effectively select the appropriate risk and demand during
the bidding procedure. It is believed that the proposed algorithms could provide relevant
practitioners with a simple and rapid tool to cope with possible uncertain electric price
changes in the future and improve the practitioners’ abilities in managing dispatching risks
and making cost evaluations, as well as generating capability constraints.
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